
Motor Control Library Help

Copyright (c) 2013 Microchip Technology Inc. All rights reserved.

Table of Contents

1 Motor Control Library 1-1

Motor Control Library Help

 ii

1 Motor Control Library

Files

Name Description

motor_control.h This header file lists all the interfaces used by the Motor Control library.

Description

1 Motor Control Library Help

 1-1

1

1.1 Introduction
Motor Control Library

for

Microchip Microcontrollers

This library is a collection of optimized functions commonly used in Motor Control applications.

Description

The Motor Control library contains function blocks that are optimized for the dsPIC33F and dsPIC33E family of Digital Signal
Controllers (DSC). All functions in this Motor Control library have input(s) and output(s), but do not access any of the DSC
peripherals. The library functions are designed to be used within an application framework for realizing an efficient and
flexible way of implementing a Motor Control application.

The block diagram in Figure-1 shows a typical usage scenario. The user-developed Motor Control application interfaces to
the DSC peripherals while using function calls into this library to perform majority of the time-critical operations.

Figure-1: Block diagram of a typical library usage scenario.

1.1 Introduction Motor Control Library Help

 1-2

1

1.2 Release Notes
Motor Control Library Version : 0.10 Release Date: December 11th, 2013

This is the first release of the library. The interface can change in the beta and\or 1.0 release.

New:

None.

Changes:

None.

Fixes:

None.

Known Issues:

None.

Development Tools:

This version of the library is tested to be compatible with the following:

• XC16 v1.11 compiler (only)

• MPLAB X IDE v1.90 and later

Performance and functional correctness of the library cannot be guaranteed if this version of the library is used with versions
of the development tools other than those listed above.

Other Notes:

The "inline" keyword will be recognized by the compiler only if compiler optimizations are enabled. While using compiler
optimization level -O1 and -Os, check the "Do not override 'inline'" option to inline the library function calls. Keyword "inline"
is only a high-level suggestion to the compiler and certain usage cases or explicit options can disable inlining. Refer to the
compiler documentation for more information on this topic.

1.2 Release Notes Motor Control Library Help

 1-3

1

1.3 SW License Agreement
(c) 2013 Microchip Technology Inc.

Microchip licenses this software to you solely for use with Microchip products. The software is owned by Microchip and its
licensors, and is protected under applicable copyright laws. All rights reserved.

SOFTWARE IS PROVIDED "AS IS" MICROCHIP EXPRESSLY DISCLAIMS ANY WARRANTY OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MICROCHIP BE LIABLE
FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA,
HARM TO YOUR EQUIPMENT, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES,
ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), ANY CLAIMS FOR
INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.

To the fullest extent allowed by law, Microchip and its licensors liability shall not exceed the amount of fees, if any, that you
have paid directly to Microchip to use this software.

MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS.

1.3 SW License Agreement Motor Control Library Help

 1-4

1

1.4 Library Overview
This topic describes the basic architecture of the Motor Control Library and provides information and examples on how to
use it.

The Motor Control Library hosts functions in two implementation variants:

1. C - functions are declared with static and inline keywords.

2. Assembly - functions are defined in a C-callable archive file with function interfaces defined in the motor_control.h file.

Library users may choose to use one or both or a mixture of these two implementation variants. Unused implementation
variants of the library will not consume data or program memory on the target device.

Since the C implementation of library functions are declared "inline", the compiler will attempt to integrate the library
function's code into the code for its callers. This usually makes execution faster by eliminating the function-call overhead.
Refer to the compiler documentation for more information on function inlining.

Interface Header File: motor_control.h

The interfaces to the Motor Control library are defined in the "motor_control.h" header file. Any C language source (.c) file
that uses the Motor Control library should include the "motor_control.h".

Library Files: libmotor_control_dspic33e-elf.a and libmotor_control_dspic33f-elf.a

The Motor Control library archive (.a) files installed with the library release. The prototypes for library functions hosted by the
archive files are described in the motor_control.h file. Both of these archive files released with the library are built using the
ELF-type of Object Module Format (OMF).

Inline C Definitions Header File: motor_control_inline_dspic.h

This header file hosts the C language definitions of the library functions. The "motor_control_inline_dspic.h" is automatically
included when a C language source (.c) file includes the "motor_control.h" file.

Mapping Header File: motor_control_mapping.h

This header file defines a short function name for each of the library functions and maps it, by default, to the prototype of one
of the implementation variants. The "motor_control_mapping.h" is automatically included when a C language source (.c) file
includes the "motor_control.h" file.

1.4.1 Library Sections

The library interface routines are divided into three sub-sections. Each sub-section addresses one of the classes of
operation in the Motor Control library.

Library Interface Section Description

Calculate Functions performing mathematical operations on a set of numerical
inputs.

Transform Functions for transforming inputs from one reference frame to another.

1.4 Library Overview Motor Control Library Help Library Sections

 1-5

1

Controller Functions related to the PI/PID controller.

1.4.2 Library Usage Model

This topic describes the typical usage model for this library.

In order to use the library in the user application:

1. Include the library archive file into the application project. Add the library archive directory into the Project Properties ->
xc16-ld -> (Option categories) Libraries field as shown below.

2. Ensure that the application project is configured to use ELF/DWARF type of output file format.

1.4 Library Overview Motor Control Library Help Library Usage Model

 1-6

1

3. Include the motor_control.h file in all C language source (.c) file that use the Motor Control library.

 #include "motor_control.h"

4. Add the library path to the C include directory field in Project Properties -> xc16-gcc -> (Option categories) Preprocessing
and messages -> C include dirs.

5. Define variable/structures using type-defines listed in the motor_control.h file.

 MC_SINCOS_T mcSineCos;

1.4 Library Overview Motor Control Library Help Library Usage Model

 1-7

1

6. Initialize these structures as required.

 mcSineCos.cos = 0;
 mcSineCos.sin = 0;

7. Where required, call the appropriate library function with the necessary arguments.

 temp = MC_CalculateSineCosine_Assembly_Ram(angle, &mcSineCos);

Notes:

• While typing the library function name, using Ctrl+Space keys in the MPLAB X IDE will bring up a list of relevant function
names to choose from, as shown below (code completion feature of the MPLAB X IDE).

• If the user application project files are within a folder structure which will not move relative to the library path, it is
recommended to quote relative folder paths for the library header and archive directories.

1.4.3 Function Naming

Library function names have been organized in a specific order with underscore characters and camel case to work with the
MPLAB X IDE code completion feature. Figure below describes the library function naming convention.

Example:

1.4 Library Overview Motor Control Library Help Function Naming

 1-8

1

MC_CalculateSineCosine_Assembly_Ram

Calculate – Library section

SineCosine – Function name

Assembly – Implementation

Ram – Memory where the sine table is located

1.4 Library Overview Motor Control Library Help Function Naming

 1-9

1

1.5 Configuring the Library Mapping
The library provides short function names for each of the library functions.

Each short function name maps into a default library function prototype as listed in the motor_control_mapping.h file. If
required, users can add configuration define statements in the motor_control_mapping.h file to change the default mapping.

For instance, the CalculateSineCosine function has a short name MC_CalculateSineCosine. By default,
MC_CalculateSineCosine short name maps to MC_CalculateSineCosine_Assembly_Ram. However, adding the following
configuration define in the motor_control_mapping.h file:

#define MC_CONFIG_CALCULATESINECOSINE_INLINEC_RAM

will automatically map the MC_CalculateSineCosine short name to the function prototype
MC_CalculateSineCosine_InlineC_Ram.

The default mappings are as shown in the table below.

Short function name Library function prototype

MC_CalculateSineCosine MC_CalculateSineCosine_Assembly_Ram

MC_TransformParkInverse MC_TransformParkInverse_Assembly

MC_TransformClarkeInverse MC_TransformClarkeInverseSwappedInput_Assembly

MC_CalculateSpaceVector MC_CalculateSpaceVectorPhaseShifted_Assembly

MC_TransformClarke MC_TransformClarke_Assembly

MC_TransformPark MC_TransformPark_Assembly

MC_ControllerPIUpdate MC_ControllerPIUpdate_Assembly

1.5 Configuring the Library Mapping Motor Control Library Help

 1-10

1

1.6 Modifying the Library
At release, the library includes two archive files:

1. libmotor_control_dspic33e-elf.a - To be used with dsPIC33E family of devices.

2. libmotor_control_dspic33f-elf.a - To be used with dsPIC33F family of devices.

Both of these archive files released with the library are built using the ELF type Object Module Format (OMF). The source
(.s) files that are used to build these archive files are also provided with the library, in the /src folder. These source files are
provided for reference and need not be used directly in a typical library usage scenario.

Users may also utilize the flexibility provided by the library to modify the source files and re-build their own archive files. In
order to help users to get started, two library projects have been included in the /mplabx folder of the library:

1. libmotor_control_dspic33e-elf.X - To be used with dsPIC33E family of devices.

2. libmotor_control_dspic33f-elf.X - To be used with dsPIC33F family of devices.

These library projects assemble the source files from the /src folder using an assembly API file, /src/mc_interfaces_dspic.inc,
and then archive the assembled output object files into a binary archive. The binary archive is, by default, saved in the
/mplabx/libmotor_control_dspic33<e/f>-elf.X/dist/default/production folder.

1.6 Modifying the Library Motor Control Library Help

 1-11

1

1.7 Performance
The following table lists the approximate number of instruction cycles required to:

1. Save the arguments

2. Call into the library function

3. Return from the library function

4. Save the return value

Function Name Instruction Cycle Usage

(Minimum)

Instruction Cycle Usage

(Maximum)

MC_TransformParkInverse_Assembly 33 33

MC_TransformClarkeInverseSwappedInput_Assembly 34 34

MC_CalculateSpaceVectorPhaseShifted_Assembly 51 59

MC_TransformClarke_Assembly 29 29

MC_TransformPark_Assembly 33 33

MC_ControllerPIUpdate_Assembly 53 55

MC_CalculateSineCosine_Assembly_Ram 34 49

It was observed that C variant of the library functions, when inlined by the compiler at optimization level -O2, required
significantly lesser number of instruction cycles compared to their equivalent assembly-based variants. This relative
improvement in performance is due to the absence of function call overhead when the C functions are inlined by the
compiler into the application code.

Note:

The above performance numbers were measured on the current/latest version of the library.

1.7 Performance Motor Control Library Help

 1-12

1

1.8 Register Usage
The register usage and handling behavior of the library functions are as described below.

1. Assembly implementation: Register W0 - W7 are caller saved. The calling function must preserve these values before the
library function call if their value is required subsequently from the library function call. The stack is a good place to
preserve these values.

2. Assembly implementation: Register W8 - W14 are saved by the library function if they are used within the library function.

3. Register W0 - W7 may be used for argument transmission.

4. Accumulator (A and B) registers are not saved by any of the library functions. If the calling function requires the
accumulator registers to be unchanged after the library function call, the calling function will have to save the accumulator
registers before the library function call.

5. Core Control Register (CORCON): certain library functions require CORCON register to be setup in a certain state in
order to operate correctly. Due to this requirement, these library functions save the CORCON register on the stack in the
beginning of the function and restore it before the function return. After saving the CORCON register, library functions
write to all bits of the CORCON register. Thus, for the brief duration when these library functions are executing, the state
of CORCON register may be different from its state as set by the function caller. This may temporarily change the CPU
core behavior with respect to exception processing latency, DO loop termination, CPU interrupt priority level and
DSP-engine behavior.

1.8 Register Usage Motor Control Library Help

 1-13

1

1.9 Library Interface

1.9.1 Types

1.9.1.1 MC_SINCOS_T Structure
C

typedef struct {
 int16_t cos;
 int16_t sin;
} MC_SINCOS_T;

Description

Sine-Cosine data type

This structure will host parameters related to Sine and Cosine components of the motor angle.

Members

Members Description

int16_t cos; Cosine component

int16_t sin; Sine component

1.9.1.2 MC_DQ_T Structure
C

typedef struct {
 int16_t d;
 int16_t q;
} MC_DQ_T;

Description

D-Q reference frame data type

This structure will host parameters related to D-Q reference frame.

Members

Members Description

int16_t d; D-axis component

int16_t q; Q-axis component

1.9.1.3 MC_ALPHABETA_T Structure
C

typedef struct {
 int16_t alpha;
 int16_t beta;
} MC_ALPHABETA_T;

1.9 Library Interface Motor Control Library Help Types

 1-14

1

Description

Alpha-Beta reference frame data type

This structure will host parameters related to Alpha-Beta reference frame.

Members

Members Description

int16_t alpha; Alpha component

int16_t beta; Beta component

1.9.1.4 MC_ABC_T Structure
C

typedef struct {
 int16_t a;
 int16_t b;
 int16_t c;
} MC_ABC_T;

Description

ABC reference frame data type

This structure will host parameters related to ABC reference frame.

Members

Members Description

int16_t a; Phase A component

int16_t b; Phase B component

int16_t c; Phase C component

1.9.1.5 MC_DUTYCYCLEOUT_T Structure
C

typedef struct {
 uint16_t dutycycle1;
 uint16_t dutycycle2;
 uint16_t dutycycle3;
} MC_DUTYCYCLEOUT_T;

Description

Duty-cycle data type

This structure will host parameters related to PWM module Duty Cycle values.

Members

Members Description

uint16_t dutycycle1; Duty cycle for phase #1

uint16_t dutycycle2; Duty cycle for phase #2

uint16_t dutycycle3; Duty cycle for phase #3

1.9.1.6 MC_PISTATE_T Structure
C

typedef struct {
 int32_t integrator;

1.9 Library Interface Motor Control Library Help Types

 1-15

1

 int16_t kp;
 int16_t ki;
 int16_t kc;
 int16_t outMax;
 int16_t outMin;
} MC_PISTATE_T;

Description

PI Controller State data type

This structure will host parameters related to the PI Controller state.

Members

Members Description

int32_t integrator; Integrator sum

int16_t kp; Proportional gain co-efficient term

int16_t ki; Integral gain co-efficient term

int16_t kc; Excess gain co-efficient term

int16_t outMax; Maximum output limit

int16_t outMin; Minimum output limit

1.9.1.7 MC_PIPARMIN_T Structure
C

typedef struct {
 MC_PISTATE_T piState;
 int16_t inReference;
 int16_t inMeasure;
} MC_PIPARMIN_T;

Description

PI Controller Input data type

This structure will host parameters related to the PI Controller input. PI controller state is a part of the PI Controller input.

Members

Members Description

MC_PISTATE_T piState; PI state as input parameter to the PI controller

int16_t inReference; Input reference to the PI controller

int16_t inMeasure; Input measured value

1.9.1.8 MC_PIPARMOUT_T Structure
C

typedef struct {
 int16_t out;
} MC_PIPARMOUT_T;

Description

PI Controller Output data type

This structure will host parameters related to the PI Controller output.

Members

Members Description

int16_t out; Output of the PI controller

1.9 Library Interface Motor Control Library Help Calculate Functions

 1-16

1

1.9.2 Calculate Functions

1.9.2.1 MC_CalculateSineCosine_Assembly_Ram Function
C

uint16_t MC_ATTRB MC_CalculateSineCosine_Assembly_Ram(
 int16_t angle,
 MC_SINCOS_T * pSinCos
);

Description

This function calculates the Sine and Cosine values for specified angle input using linear interpolation on a sine table of 128
words. This routine works the same for both integer input and 1.15 scaling input.

Preconditions

None.

Parameters

Parameters Description

angle Input - This parameter is the input angle which will be used to calculate the Sine
and Cosine components.

pSinCos Output - This parameter is a pointer to a MC_SINCOS_T type structure to
which the Sine and Cosine components of the angle are written.

Returns

Unsigned integer value '1' for direct look up and '2' for interpolation.

Remarks

For integer scaling the Angle is scaled such that 0 <= Angle < 2*pi corresponds to 0 <= Ang < 0xFFFF. The resulting Sine
and Cosine values are returned scaled to -32769 -> 32767 i.e. (0x8000 -> 0x7FFF). For 1.15 scaling the Angle is scaled
such that -pi <= Angle < pi corresponds to -1 -> 0.9999 i.e. (0x8000 <= Ang < 0x7FFF). The resulting Sine and Cosine
values are returned scaled to -1 -> 0.9999 i.e. (0x8000 -> 0x7FFF).

Example

uint16_t temp;
int16_t angle;
MC_SINCOS_T mcSinCos;
temp = MC_CalculateSineCosine_Assembly_Ram(angle, &mcSinCos);

1.9.2.2 MC_CalculateSineCosine_InlineC_Ram Function
C

static inline uint16_t MC_ATTRB MC_CalculateSineCosine_InlineC_Ram(
 int16_t angle,
 MC_SINCOS_T * pSinCos
);

Description

This function calculates the Sine and Cosine values for specified angle input using linear interpolation on a sine table of 128
words. This routine works the same for both integer input and 1.15 scaling input.

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own

1.9 Library Interface Motor Control Library Help Calculate Functions

 1-17

1

assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

angle Input - This parameter is the input angle which will be used to calculate the Sine
and Cosine components.

pSinCos Output - This parameter is a pointer to a MC_SINCOS_T type structure to
which the Sine and Cosine components of the angle are written.

Returns

Unsigned integer value '1' for direct look up and '2' for interpolation.

Remarks

This function uses the sine-table included within the library archive file. Hence, the library archive file must be included in the
application project for this function to link correctly.

For integer scaling the Angle is scaled such that 0 <= Angle < 2*pi corresponds to 0 <= Ang < 0xFFFF. The resulting Sine
and Cosine values are returned scaled to -32769 -> 32767 i.e. (0x8000 -> 0x7FFF). For 1.15 scaling the Angle is scaled
such that -pi <= Angle < pi corresponds to -1 -> 0.9999 i.e. (0x8000 <= Ang < 0x7FFF). The resulting Sine and Cosine
values are returned scaled to -1 -> 0.9999 i.e. (0x8000 -> 0x7FFF).

Example

uint16_t temp;
int16_t angle;
MC_SINCOS_T mcSinCos;
temp = MC_CalculateSineCosine_InlineC_Ram(angle, &mcSinCos);

1.9.2.3 MC_CalculateSpaceVectorPhaseShifted_Assembly
Function
C

uint16_t MC_ATTRB MC_CalculateSpaceVectorPhaseShifted_Assembly(
 MC_ABC_T * pABC,
 uint16_t iPwmPeriod,
 MC_DUTYCYCLEOUT_T * pDutyCycleOut
);

Description

This function calculates the duty cycle values based on the three scaled reference vectors in the a-b-c reference frame and
the PWM period value.

This function is designed to work with the TransformClarkeInverseSwappedInput() in order to simplify the calculation of
three-phase duty cycle values from a given set of inputs in the alpha-beta reference frame. This function uses a reference
axis that is phase shifted by 30 degrees relative to the standard Space Vector Modulation reference axis. This phase-shifted
reference axis is accomodated by using reference vector inputs from a modified version of the inverse Clarke transform
which swaps the alpha-beta values at its input.

Preconditions

None.

Parameters

Parameters Description

pABC Input - This parameter is a pointer to a MC_ABC_T type structure.

iPwmPeriod Input - This parameter is an unsigned integer value of the PWM period.

1.9 Library Interface Motor Control Library Help Calculate Functions

 1-18

1

pDutyCycleOut Output - This parameter is a pointer to a MC_DUTYCYCLEOUT_T type
structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ABC_T mcVabc;
uint16_t iPwmPeriod;
MC_DUTYCYCLEOUT_T mcDutyCycleOut;
temp = MC_CalculateSpaceVectorPhaseShifted_Assembly(&mcVabc, iPwmPeriod, &mcDutyCycleOut);

1.9.2.4 MC_CalculateSpaceVectorPhaseShifted_InlineC Function
C

static inline uint16_t MC_ATTRB MC_CalculateSpaceVectorPhaseShifted_InlineC(
 MC_ABC_T * pABC,
 uint16_t iPwmPeriod,
 MC_DUTYCYCLEOUT_T * pDutyCycleOut
);

Description

This function calculates the duty cycle values based on the three scaled reference vectors in the a-b-c reference frame and
the PWM period value.

This function is designed to work with the TransformClarkeInverseSwappedInput() in order to simplify the calculation of
three-phase duty cycle values from a given set of inputs in the alpha-beta reference frame. This function uses a reference
axis that is phase shifted by 30 degrees relative to the standard Space Vector Modulation reference axis. This phase-shifted
reference axis is accomodated by using reference vector inputs from a modified version of the inverse Clarke transform
which swaps the alpha-beta values at its input.

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

pABC Input - This parameter is a pointer to a MC_ABC_T type structure.

iPwmPeriod Input - This parameter is an unsigned integer value of the PWM period.

pDutyCycleOut Output - This parameter is a pointer to a MC_DUTYCYCLEOUT_T type
structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ABC_T mcVabc;
uint16_t iPwmPeriod;

1.9 Library Interface Motor Control Library Help Calculate Functions

 1-19

1

MC_DUTYCYCLEOUT_T mcDutyCycleOut;
temp = MC_CalculateSpaceVectorPhaseShifted_InlineC(&mcVabc, iPwmPeriod, &mcDutyCycleOut);

1.9.3 Controller Functions

1.9.3.1 MC_ControllerPIUpdate_Assembly Function
C

uint16_t MC_ATTRB MC_ControllerPIUpdate_Assembly(
 int16_t inReference,
 int16_t inMeasure,
 MC_PISTATE_T * pPIState,
 int16_t * pPIParmOutput
);

Description

This function calculates a PI correction output from a given measured input and a reference. The equation for PI output is:

out = Kp*(inReference-inMeasure) + Ki*Integral[inReference-inMeasure, dt] - Kc*Excess

Where, out = Fractional 1.15 output, is limited to between outMax and outMin. Kp = Proportional gain co-efficient term Ki =
Integral gain co-efficient term Kc = Excess gain co-efficient term Excess = Excess error after "out" is limited to between
outMax and outMin. This implementation includes an anti-windup term to limit the integral windup.

Preconditions

None.

Parameters

Parameters Description

inReference Input - This parameter is a 1.15 fractional format reference input.

inMeasure Input - This parameter is a 1.15 fractional format measured input.

pPIState Input/Output - This paramater is a pointer to a MC_PISTATE_T type structure.

pPIParmOutput Output - This paramater is a pointer to a signed integer type variable.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format, except for Kp which is in 1.11 format. The constant Kp is scaled so it can be
represented in 1.15 format by adjusting the constant by a power of 2.

Example

MC_PIPARMIN_T mcPIParmInput;
MC_PIPARMOUT_T mcPIParmOutput;
temp = MC_ControllerPIUpdate_Assembly(mcPIParmInput.inReference, mcPIParmInput.inMeasure,
&mcPIParmInput.piState, &mcPIParmOutput.out);

1.9.3.2 MC_ControllerPIUpdate_InlineC Function
C

static inline uint16_t MC_ATTRB MC_ControllerPIUpdate_InlineC(
 int16_t inReference,
 int16_t inMeasure,
 MC_PISTATE_T * pPIState,
 int16_t * pPIParmOutput
);

1.9 Library Interface Motor Control Library Help Controller Functions

 1-20

1

Description

This function calculates a PI correction output from a given measured input and a reference. The equation for PI output is:

out = Kp*(inReference-inMeasure) + Ki*Integral[inReference-inMeasure, dt] - Kc*Excess

Where, out = Fractional 1.15 output, is limited to between outMax and outMin. Kp = Proportional gain co-efficient term Ki =
Integral gain co-efficient term Kc = Excess gain co-efficient term Excess = Excess error after "out" is limited to between
outMax and outMin. This implementation includes an anti-windup term to limit the integral windup.

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

inReference Input - This parameter is a 1.15 fractional format reference input.

inMeasure Input - This parameter is a 1.15 fractional format measured input.

pPIState Input/Output - This paramater is a pointer to a MC_PISTATE_T type structure.

pPIParmOutput Output - This paramater is a pointer to a signed integer type variable.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format, except for Kp which is in 1.11 format. The constant Kp is scaled so it can be
represented in 1.15 format by adjusting the constant by a power of 2.

Example

MC_PIPARMIN_T mcPIParmInput;
MC_PIPARMOUT_T mcPIParmOutput;
temp = MC_ControllerPIUpdate_InlineC(mcPIParmInput.inReference, mcPIParmInput.inMeasure,
&mcPIParmInput.piState, &mcPIParmOutput.out);

1.9.4 Transform Functions

1.9.4.1 MC_TransformClarke_Assembly Function
C

uint16_t MC_ATTRB MC_TransformClarke_Assembly(
 MC_ABC_T * pABC,
 MC_ALPHABETA_T * pAlphaBeta
);

Description

This function transforms inputs in an a-b-c reference frame to an alpha-beta reference frame using the equation:

alpha = a
beta = a*(1/sqrt(3)) + 2*b*(1/sqrt(3))

Preconditions

None.

1.9 Library Interface Motor Control Library Help Transform Functions

 1-21

1

Parameters

Parameters Description

pABC Input - This parameter is a pointer to a MC_ABC_T type structure.

pAlphaBeta Output - This parameter is a pointer to a MC_ALPHABETA_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ABC_T mcIabc;
MC_ALPHABETA_T mcIAlphaBeta;
temp = MC_TransformClarke_Assembly(&mcIabc, &mcIAlphaBeta);

1.9.4.2 MC_TransformClarke_InlineC Function
C

static inline uint16_t MC_ATTRB MC_TransformClarke_InlineC(
 MC_ABC_T * pABC,
 MC_ALPHABETA_T * pAlphaBeta
);

Description

This function transforms inputs in an a-b-c reference frame to an alpha-beta reference frame using the equation:

alpha = a
beta = a*(1/sqrt(3)) + 2*b*(1/sqrt(3))

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

pABC Input - This parameter is a pointer to a MC_ABC_T type structure.

pAlphaBeta Output - This parameter is a pointer to a MC_ALPHABETA_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ABC_T mcIabc;
MC_ALPHABETA_T mcIAlphaBeta;
temp = MC_TransformClarke_InlineC(&mcIabc, &mcIAlphaBeta);

1.9 Library Interface Motor Control Library Help Transform Functions

 1-22

1

1.9.4.3 MC_TransformClarkeInverseSwappedInput_Assembly
Function
C

uint16_t MC_ATTRB MC_TransformClarkeInverseSwappedInput_Assembly(
 MC_ALPHABETA_T * pAlphaBeta,
 MC_ABC_T * pABC
);

Description

This function calculates the scaled reference vectors in an a-b-c reference frame using inputs from an alpha-beta reference
frame, as described by the equation:

a = beta
b = -beta/2 + (sqrt(3)/2) * alpha
c = -beta/2 - (sqrt(3)/2) * alpha

This is a modified variant of the inverse Clarke transformation where alpha & beta are swapped compared to the normal
inverse Clarke transformation. This function is designed to work with the CalculateSpaceVectorPhaseShifted() in order to
simplify the calculation of three-phase duty cycle values from a given set of inputs in the alpha-beta reference frame.

Preconditions

None.

Parameters

Parameters Description

pAlphaBeta Input - This parameter is a pointer to a MC_ALPHABETA_T type structure.

pABC Output - This parameter is a pointer to a MC_ABC_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ALPHABETA_T mcVAlphaBeta;
MC_ABC_T mcVabc;
temp = MC_TransformClarkeInverseSwappedInput_Assembly(&mcVAlphaBeta, &mcVabc);

1.9.4.4 MC_TransformClarkeInverseSwappedInput_InlineC
Function
C

static inline uint16_t MC_ATTRB MC_TransformClarkeInverseSwappedInput_InlineC(
 MC_ALPHABETA_T * pAlphaBeta,
 MC_ABC_T * pABC
);

Description

This function calculates the scaled reference vectors in an a-b-c reference frame using inputs from an alpha-beta reference
frame, as described by the equation:

a = beta
b = -beta/2 + (sqrt(3)/2) * alpha
c = -beta/2 - (sqrt(3)/2) * alpha

This is a modified variant of the inverse Clarke transformation where alpha & beta are swapped compared to the normal

1.9 Library Interface Motor Control Library Help Transform Functions

 1-23

1

inverse Clarke transformation. This function is designed to work with the CalculateSpaceVectorPhaseShifted() in order to
simplify the calculation of three-phase duty cycle values from a given set of inputs in the alpha-beta reference frame.

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

pAlphaBeta Input - This parameter is a pointer to a MC_ALPHABETA_T type structure.

pABC Output - This parameter is a pointer to a MC_ABC_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ALPHABETA_T mcVAlphaBeta;
MC_ABC_T mcVabc;
temp = MC_TransformClarkeInverseSwappedInput_InlineC(&mcVAlphaBeta, &mcVabc);

1.9.4.5 MC_TransformPark_Assembly Function
C

uint16_t MC_ATTRB MC_TransformPark_Assembly(
 MC_ALPHABETA_T * pAlphaBeta,
 MC_SINCOS_T * pSinCos,
 MC_DQ_T * pDQ
);

Description

This function transforms inputs in an alpha-beta reference frame to a stationary d-q reference frame using the equation:

d = alpha*cos + beta*sin
q = -alpha*sin + beta*cos

Preconditions

None.

Parameters

Parameters Description

pAlphaBeta Input - This parameter is a pointer to a MC_ALPHABETA_T type structure.

pSinCos Input - This parameter is a pointer to a MC_SINCOS_T type structure.

pDQ Output - This parameter is a pointer to a MC_DQ_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

1.9 Library Interface Motor Control Library Help Transform Functions

 1-24

1

Example

MC_ALPHABETA_T mcIAlphaBeta;
MC_SINCOS_T mcSinCos;
MC_DQ_T mcIDQ;
temp = MC_TransformPark_Assembly(&mcIAlphaBeta, &mcSinCos, &mcIDQ);

1.9.4.6 MC_TransformPark_InlineC Function
C

static inline uint16_t MC_ATTRB MC_TransformPark_InlineC(
 MC_ALPHABETA_T * pAlphaBeta,
 MC_SINCOS_T * pSinCos,
 MC_DQ_T * pDQ
);

Description

This function transforms inputs in an alpha-beta reference frame to a stationary d-q reference frame using the equation:

d = alpha*cos + beta*sin
q = -alpha*sin + beta*cos

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

pAlphaBeta Input - This parameter is a pointer to a MC_ALPHABETA_T type structure.

pSinCos Input - This parameter is a pointer to a MC_SINCOS_T type structure.

pDQ Output - This parameter is a pointer to a MC_DQ_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_ALPHABETA_T mcIAlphaBeta;
MC_SINCOS_T mcSinCos;
MC_DQ_T mcIDQ;
temp = MC_TransformPark_InlineC(&mcIAlphaBeta, &mcSinCos, &mcIDQ);

1.9.4.7 MC_TransformParkInverse_Assembly Function
C

uint16_t MC_ATTRB MC_TransformParkInverse_Assembly(
 MC_DQ_T * pDQ,
 MC_SINCOS_T * pSinCos,
 MC_ALPHABETA_T * pAlphaBeta
);

Description

This function calculates the inverse Park transform on a pair of stationary reference frame inputs. Inverse park

1.9 Library Interface Motor Control Library Help Transform Functions

 1-25

1

transformation is performed as described by the equation:

alpha = d*cos - q*sin
beta = d*sin + q*cos

Preconditions

None.

Parameters

Parameters Description

pDQ Input - This parameter is a pointer to a MC_DQ_T type structure.

pSinCos Input - This parameter is a pointer to a MC_SINCOS_T type structure.

pAlphaBeta Output - This parameter is a pointer to a MC_ALPHABETA_T type structure.

Returns

Unsigned integer value '1'.

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_DQ_T mcVDQ;
MC_SINCOS_T mcSinCos;
MC_ALPHABETA_T mcVAlphaBeta;
temp = MC_TransformParkInverse_Assembly(&mcVDQ, &mcSinCos, &mcVAlphaBeta);

1.9.4.8 MC_TransformParkInverse_InlineC Function
C

static inline uint16_t MC_ATTRB MC_TransformParkInverse_InlineC(
 MC_DQ_T * pDQ,
 MC_SINCOS_T * pSinCos,
 MC_ALPHABETA_T * pAlphaBeta
);

Description

This function calculates the inverse Park transform on a pair of stationary reference frame inputs. Inverse park
transformation is performed as described by the equation:

alpha = d*cos - q*sin
beta = d*sin + q*cos

Inline keyword has been added to the function declaration so that, when appropriate, the compiler may inline the function
call, thus eliminating the function call overhead. Static keyword has been added to the function declaration so that, if all calls
to the function are integrated into the caller and when the function's address is never used, then the function's own
assembler code is never referenced and unless specified in the command-line option, the compiler will not actually output
assembler code for the function.

Preconditions

None.

Parameters

Parameters Description

pDQ Input - This parameter is a pointer to a MC_DQ_T type structure.

pSinCos Input - This parameter is a pointer to a MC_SINCOS_T type structure.

pAlphaBeta Output - This parameter is a pointer to a MC_ALPHABETA_T type structure.

Returns

Unsigned integer value '1'.

1.9 Library Interface Motor Control Library Help Transform Functions

 1-26

1

Remarks

This routine requires inputs in the 1.15 format.

Example

MC_DQ_T mcVDQ;
MC_SINCOS_T mcSinCos;
MC_ALPHABETA_T mcVAlphaBeta;
temp = MC_TransformParkInverse_InlineC(&mcVDQ, &mcSinCos, &mcVAlphaBeta);

1.9 Library Interface Motor Control Library Help Transform Functions

 1-27

1

1.10 Files
Files

Name Description

motor_control.h This header file lists all the interfaces used by the Motor Control library.

1.10.1 motor_control.h

Motor Control Library Interface Header File

This header file lists the type defines for structures used by the Motor Control library. Library function definitions are also
listed along with information regarding the arguments of each library function. This header file also includes another header
file that hosts inline definitions of certain library functions.

Functions

Name Description

MC_CalculateSineCosine_Assembly_Ram This function calculates the Sine and Cosine values for
a specified angle input.

MC_CalculateSineCosine_InlineC_Ram This function calculates the Sine and Cosine values for
a specified angle input.

MC_CalculateSpaceVectorPhaseShifted_Assembly This function calculates the duty cycle values based on
the three scaled reference vectors in the a-b-c
reference frame and the PWM period value.

MC_CalculateSpaceVectorPhaseShifted_InlineC This function calculates the duty cycle values based on
the three scaled reference vectors in the a-b-c
reference frame and the PWM period value.

MC_ControllerPIUpdate_Assembly This function calculates the PI correction.

MC_ControllerPIUpdate_InlineC This function calculates the PI correction.

MC_TransformClarke_Assembly This function calculates the Clarke transformation.

MC_TransformClarke_InlineC This function calculates the Clarke transformation.

MC_TransformClarkeInverseSwappedInput_Assembly This function calculates the scaled reference vectors
using inputs in an alpha-beta reference frame.

MC_TransformClarkeInverseSwappedInput_InlineC This function calculates the scaled reference vectors
using inputs in an alpha-beta reference frame.

MC_TransformPark_Assembly This function calculates the Park transformation.

MC_TransformPark_InlineC This function calculates the Park transformation.

MC_TransformParkInverse_Assembly This function calculates the inverse Park transformation.

MC_TransformParkInverse_InlineC This function calculates the inverse Park transformation.

Structures

Name Description

MC_ABC_T ABC reference frame data type
This structure will host parameters related to ABC reference frame.

MC_ALPHABETA_T Alpha-Beta reference frame data type
This structure will host parameters related to Alpha-Beta reference frame.

MC_DQ_T D-Q reference frame data type
This structure will host parameters related to D-Q reference frame.

1.10 Files Motor Control Library Help motor_control.h

 1-28

1

MC_DUTYCYCLEOUT_T Duty-cycle data type
This structure will host parameters related to PWM module Duty Cycle values.

MC_PIPARMIN_T PI Controller input type define

MC_PIPARMOUT_T PI Controller Output data type
This structure will host parameters related to the PI Controller output.

MC_PISTATE_T PI Controller State data type
This structure will host parameters related to the PI Controller state.

MC_SINCOS_T Sine-Cosine data type
This structure will host parameters related to Sine and Cosine components of
the motor angle.

File Name

motor_control.h

1.10 Files Motor Control Library Help motor_control.h

 1-29

1

Index

C
Configuring the Library Mapping 1-10

F
Files 1-28

Function Naming 1-8

I
Introduction 1-2

L
Library Overview 1-5

Library Sections 1-5

Library Usage Model 1-6

M
MC_ABC_T structure 1-15

MC_ALPHABETA_T structure 1-14

MC_CalculateSineCosine_Assembly_Ram function 1-17

MC_CalculateSineCosine_InlineC_Ram function 1-17

MC_CalculateSpaceVectorPhaseShifted_Assembly function
1-18

MC_CalculateSpaceVectorPhaseShifted_InlineC function 1-19

MC_ControllerPIUpdate_Assembly function 1-20

MC_ControllerPIUpdate_InlineC function 1-20

MC_DQ_T structure 1-14

MC_DUTYCYCLEOUT_T structure 1-15

MC_PIPARMIN_T structure 1-16

MC_PIPARMOUT_T structure 1-16

MC_PISTATE_T structure 1-15

MC_SINCOS_T structure 1-14

MC_TransformClarke_Assembly function 1-21

MC_TransformClarke_InlineC function 1-22

MC_TransformClarkeInverseSwappedInput_Assembly
function 1-23

MC_TransformClarkeInverseSwappedInput_InlineC function
1-23

MC_TransformPark_Assembly function 1-24

MC_TransformPark_InlineC function 1-25

MC_TransformParkInverse_Assembly function 1-25

MC_TransformParkInverse_InlineC function 1-26

Modifying the Library 1-11

Motor Control Library 1-1

motor_control.h 1-28

P
Performance 1-12

R
Register Usage 1-13

Release Notes 1-3

S
SW License Agreement 1-4

2 Motor Control Library Help

 a

	Motor Control Library Help
	 Table of Contents
	1 Motor Control Library
	1.1 Introduction
	1.2 Release Notes
	1.3 SW License Agreement
	1.4 Library Overview
	1.4.1 Library Sections
	1.4.2 Library Usage Model
	1.4.3 Function Naming

	1.5 Configuring the Library Mapping
	1.6 Modifying the Library
	1.7 Performance
	1.8 Register Usage
	1.9 Library Interface
	1.9.1 Types
	1.9.1.1 MC_SINCOS_T Structure
	1.9.1.2 MC_DQ_T Structure
	1.9.1.3 MC_ALPHABETA_T Structure
	1.9.1.4 MC_ABC_T Structure
	1.9.1.5 MC_DUTYCYCLEOUT_T Structure
	1.9.1.6 MC_PISTATE_T Structure
	1.9.1.7 MC_PIPARMIN_T Structure
	1.9.1.8 MC_PIPARMOUT_T Structure

	1.9.2 Calculate Functions
	1.9.2.1 MC_CalculateSineCosine_Assembly_Ram Function
	1.9.2.2 MC_CalculateSineCosine_InlineC_Ram Function
	1.9.2.3 MC_CalculateSpaceVectorPhaseShifted_Assembly Function
	1.9.2.4 MC_CalculateSpaceVectorPhaseShifted_InlineC Function

	1.9.3 Controller Functions
	1.9.3.1 MC_ControllerPIUpdate_Assembly Function
	1.9.3.2 MC_ControllerPIUpdate_InlineC Function

	1.9.4 Transform Functions
	1.9.4.1 MC_TransformClarke_Assembly Function
	1.9.4.2 MC_TransformClarke_InlineC Function
	1.9.4.3 MC_TransformClarkeInverseSwappedInput_Assembly Function
	1.9.4.4 MC_TransformClarkeInverseSwappedInput_InlineC Function
	1.9.4.5 MC_TransformPark_Assembly Function
	1.9.4.6 MC_TransformPark_InlineC Function
	1.9.4.7 MC_TransformParkInverse_Assembly Function
	1.9.4.8 MC_TransformParkInverse_InlineC Function

	1.10 Files
	1.10.1 motor_control.h

	Index

